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Abstract. We study the complex Spatiotemporal behaviour of a coupled map lattice with'a 
one-humped chaotic map and an unstable Laplacian coupling. Bifurcations are numerically 
investigated and interpreted using low-dimensional approximations corresponding to the relevant 
degrees of freedom of the infinite-dimensional system. Varying the control panmeter we 
find different phases in the chaotic domain such as localized chaos or propagating chaos, 
spatiotemporal intermittency and transient chaos. According to OUT results, unstable coupling 
leads to a number of new features, including the effects that (i) the iirst bifurcation becomes 
discontinuous and (ii) the cha~t ic  regime sets in sooner than for a single map. 

1. Introduction 

Stochastic behaviour occurring in phenomena formally described by deterministic equations 
has attracted much interest recently. In particular, in turbulent flows there are mechanisms, 
which are only partially understood, producing complex spatiotemporal behaviour beyond 
a given value of some characteristic parameter. 

As a simpler case, one can consider spatially homogeneous systems with complicated 
temporal dependence described by ordinary differential equations. From the study of simple 
systems of nonlinear differential equations and from various simple mappings, much has 
been understood about chaotic temporal behaviour. In such systems the time dependence 
of the quantities describing the state of the system can be very different depending on 
the value of some control parameters. In addition to constant, periodical, and quasi- 
periodical temporal dependence, random-like behaviour (called deterministic chaos) can 
also appear even in very simple nonlinear dynamical system. The related theoretical results 
accumulated over the past two decades provide a good description of these phenomena in 
low-dimensional nonlinear systems [1-3]. 

On the other hand, when one is only interested in complex dependences in space, it 
is necessary to consider partial differential equations (PDES) or various discretized models. 
PDEs are continuous in space, time and state variables, but because of this feature the related 
large scale numerical investigations are very difficult to realize. A possible alternative 
strategy to understanding spatiotemporal complexity is to investigate simple chaotic maps 
assigned to the points of a lattice and coupled together via some rule. Discrete models make 
the simulations easier and at the same time some general aspects of PDEs may be retained. It 
is widely accepted that from the study of discrete systems one can obtain useful information 
about the nature of processes involving complex spatiotemporal behaviour, including fluid 
flows and pattern formation [4]. 
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Coupled map lattices (CML) [5] are discrete in space and time but continuous in states. 
They have two basic ingredients: the local dynamics is given by (i) a nonlinear map, and 
(ii) a coupling term (which can be local or global). Besides the investigation of general 
properties, CMLs are used to simulate real systems in various fields of science including 
neural networks 161. population dynamics in biology 171, chemical reactions [SI, phase 
separation [9], surface roughening [lo] and many others. 

The first and most widely investigated CML is the diffusively-coupled logistic map [ll- 
151. This type of cm is dominated by the conflict between two tendencies: the diffusive 
coupling tends to make the system homogeneous in space, while the chaotic map produces 
spatial inhomogeneity due to the sensitive dependence on the initial conditions. Thus, the 
interesting parameter range is where the local dynamics is chaotic, since for the parameters 
where the map has a stable fixed point the system tends to the trivial homogeneous state. 

In this paper we study a CML where the roles among these two tendencies are changed. 
We assume a negative value for the coupling constant in front of the Laplacian term, 
enhancing the growth of small spatial inhomogeneities especially at the smallest wavelength 
which is limited by the cut-off due to the spatial discreteness of the system. So non-trivial 
behaviour-including inhomogeneous state and spatiotemporal chaos-can arise even in the 
parameter range where the local map exhibits convergence towards a fixed point. 

The choice of this kind of coupling is partially motivated by recent interest in the so 
called KuramotoSivashinsky equation [16,17] in which the interaction of three terms (an 
unstable Laplacian, a nonlinear and a stabilizing term) results in spatiotemporal complexity. 
However, in this work we do not intend to model a well defined physical system; our aim 
is to catch some general aspects caused by the interaction of an unstable coupling and a 
nonlinear map. 

The paper is organized as follows. In section 2 we describe the model. The route to 
chaos, via Spatiotemporal bifurcation, is treated in section 3, different aspects of chaotic 
phases are studied in section 4 and we discuss our results in section 5. 

2. The model 

The general form of our CML dynamics on a one-diiensional lattice with diffusive coupling 
can be written as 

where U is  the state variable, i and t respectively represent the discrete spatial and temporal 
coordinates. In our case E is a negative constant determining the coupling strength. We 
mostly study the strong coupling case with E = -1. 

The function f represents the local dynamics and includes a control parameter A. When 
making a choice for this function we must take some precautions to avoid divergence of U 
to infinity. For maps like the logistic map there exists a closed interval of initial conditions 
which leads to finite attractors. However, when the unstable coupling is switched on, some 
local state variables can escape from this interval and drive the system to global divergence. 

There are two possible methods to control this divergence: (i) by the restriction of the 
control parameters to a given interval, then the map can be a properly shifted logistic map; 
and (ii) by modification of the map such that it becomes bounded for all U. We choose this 
second possibility: however, we find the same qualitative behaviour for the first case in the 
allowed band. Our choice for f is a Gaussian with multiplicative control parameter 
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This function keeps the onehumped form of the logistic map and the exponentially decaying 
part ensures the dissipation in the system. We choose a K value resulting in a map having 
(i) a well defined hump for U > 0 and (ii) only one fixed point. We used K = 0.5086 which 
satisfied these criteria. In some cases we studied the effect of changing of this parameter. 

In figure 1 we present the bifurcation diagram corresponding to (2) and the related 
Lyapunov exponent for the local dynamics, which is similar to the bifurcational sequence 
and chaotic bands found for the logistic map. This is not surprising since the universal 
properties of unimodal maps are well known. The similarity holds only for h not too large. 
The chaotic motion gradually disappears and inverse bifurcations OCCUI as h is further 
increased. We suppose that this is due to the exponential decaying form of the function. 

Figure 1. The bifurcation diagram (upper part) and the dependence of the Lyapunov exponent 
on the conhol parameter 0 c i c 2 (lower part) of the elementary map f ( U ) .  

In our simulations we applied periodic boundary conditions and in some cases we used 
a random boundary condition to check the stability of the attractor. The system size was 
N = 200 and the initial conditions were random with different amplitudes distributed around 
the fixed point of the local map. We employed several methods for the visualization of the 
system's behaviour: global bifurcational diagrams, spatial distribution plots, space-time 
plots with system variables represented on a grey scale and Iirt return maps. 

3. The bifurcation route to spatiotemporal chaos 

In this section we describe the steady state of our model as h is increased from zero until 
the appearance of chaos (h it: 0.81). 

For small h values the only possible steady state is the homogeneous stationary state 
which corresponds to the fixed-point solution of the local map: U' = f ~ ( u * ) .  In this interval 
the convergence towards the fixed point is stronger (i.e. the Lyapunov exponent is a relatively 
large negative number) than the effect of coupling-enhancing spatial inhomogeneities. 
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Depending on the initial conditions, a homogeneous non-homogeneous transition 
takes place in the interval (0.42,0.47) where the splitting of the local states into two 
domains creates a stationary zigzag pattern and some non-moving defects (figure 2). This 
splitting means that there are two disjoint intervals for ui until large values of I are reached. 
We will refer to them as the lower band &) and upper band (U). 

I I 

F i p  2. Steady state of the spatial distribution of U: zigzag panems with defeds using 
h = 0.65 and system size N =ZOO. 

From the linear stability analysis of the homogeneous state, we can obtain the 
amplification factor of small, spatially periodical perturbations with wavenumber k .  
Inserting 

(3 ) U = U* + ~ n e ' ~ l + ~ '  

in (l), expanding f near U* (Su < I), and neglecting the higher order terms we obtain 

e"' = [l - ~ ( 1 -  coska)] - (4) 

where r is the time step and a is the lattice constant; both can be assumed to be equal 
to one in our case. This shows that the greatest amplification rate is for the perturbation 
with wavelength two (i.e. zigzag pattern). In accordance with (4), the homogeneous state 
becomes unstable (U t 0) when the Lyapunov exponent of the local map is greater than 

df du I "=U. 

This critical value is represented by a horizontal l i e  in figure 1. When the homogeneous 
state becomes unstable the amplification of the zigzag pattern is saturated by the 
nonlinearities. The critical value in (5) is in agreement with the simulations. On the other 
hand, it is visible in figure 3 that the zigzag attractor already appears for some smaller A. 
Thus, there exists an interval where the two attractors coexist and the steady-state depends 
on the initial conditions. Therefore, this is a discontinuous transition and exhibits hysteresis 
as can be seen in figure 3. Such hysteresis is typical for first-order phase transitions. The 
width of the interval where the amactors coexist is dependent on the parameter K. 

In order to get an insight into the mechanism of this transition we can proceed as 
follows. We can simplify the situation by eliminating the defect stat= which lead only 
to local distortion of the zigzag pattern. This can be done by a properly chosen initial 
condition. Due to the fact that the steady state is spatially periodic, we can choose an initial 
condition with the same periodicity. Considering the periodic boundary condition, this 
system is equivalent with two coupled maps. Thus, the transition can be easily studied for 
two coupled maps which is a good approximation €or the infinite number of coupled maps 
if we neglect the defect states and the distortions in their neighbourhood. The surprising 
similarity in the bifurcation diagram is shown in figure 4 for the two kinds of typical initial 
conditions (i.e. randomly distributed around the tixed point of the local map in the interval 
x'i0.5 in figure 4(a) and (c) and x*f0.001 in (b) and (4). It can be seen that the branches 
in figure 4(a) and (b )  have a fine structure that is missing in the corresponding branches in 
figure 4(c) and (d); this is due to the distortions in the vicinity of defects. The transition in 



Spatiotemporal chaos 5261 

Figure 3. Bifurcation diagram for N = 200 with initial condition corresponding to the steady 
state for the previous A. 1 is increased f" zero to one (a), and then decreased back to zero 
(b). In this way~we obtained a hysteresis in theinterval (0.41.0.48). The dotted enme in (b) 
shows the unstable U defecl state. Ln (c) the hysteresis cycle is magnified and completed with 
the unstable fixed points numerically calculated for two coupled maps. 

the two-dimensional system can be studied by finding the fixed points and, analysing their 
stability. This shows that for A > 0.42, besides the homogeneous fixed point two other 
tixed points exist, one of them is stable and the other is unstable. Increasing A, the unstable 
fixed point collides with the homogeneous point forming a saddlepoint (figure 3(c)). This 
approximation c8n also be used for studying the transition where the homogeneous state 
loses its stability for the second time, forming zigzag pattems which oscillate in time and 
where a route to chaos via Hopf bifurcation occurs. 

The qualitative behaviour of the defects can be well approximated with three coupled 
maps using the same method. In this way we obtain the fact that there can be defects both 
in the U and the L bands. Immediately after the transition the U defect state is unstable and 
for any perturbation is transformed to an L defect. At a given A a saddle-node bifurcation 
takes place and results in stable U and L defects and an unstable fixed point between them, 
forming the basin boundary. 

For A further increased, the zigzag pattems begin to oscillate. Since the oscillations 
can happen in different phases, new kinds of spatial patterns appear. As can be seen in the 
bifurcation diagram, bifurcations in the U band are analogous to the well-known period- 
doubling bifurcational sequence~for one dimensional maps, while the bifurcations in the L 
band are rather different. In order to understand this we take the following steps. 

The updating rule in (1) can be separated into two terms: one depending on ui and one 
depending on the neighbours (environment) of ut:  

(6) 
&~ 

ut" = (1 - & ) f A ( U i )  + Z(fA('"it1)  + fA(ui--1)). 

If ui is in the U band the neighbours are in the L band and vice versa. 
Let us consider the first situation: In the L band the dissipation is rather strong so that 

fA(ui+l) + f~ (Ui -1 )  M constant, where the constant in our case is close to zero. 'This means 
that the motion in the U band can be well approximated with independent onedimensional 
maps: 

ut" (1 - E ) f A ( U i )  = f(l-e)A(ui). (7) 
Thus, the bifurcational sequence is a rescaled version of that of the local maps. This is 
supported by~the first return map at a randomly chosen position in the U band even for 
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Figure 4. Bifurcvion diagam for N = 200 ((a) and (b)), and for [WO coupled maps .\I = 2 ( (c )  
and (d)) with periodic boundary conditions and i in the interval (0.2). The initial conditions 
were randomly disolbuled xound the b e d  point of lhe i d  map in the blen'al I' = 0.5 in (a) 
and (c). and x' I 0.001 in (b) and (4. For each value of A alter the initialization. 500 i t d o o s  
were performed and the U values corresponding to the la~r SO iteralions me ploned. In (a) and 
(b), U is planed for each of chhc .V = 200 sites, while in (c) and (d) tt is @\eo for N = 2. 

A in the chaotic domain (figure 5). When ui is in the L band the first term is inactive 
(df/d.x << l), but the second term oscillates in time. Thus, the bifurcations here are 
induced by the U band bifurcations. The difference in the diagrams is due to the fact that 
the oscillations of two neighbours can be in many different phases. If (i) in the U band a 
bifurcation takes place and U;+, and ui-1 oscillate synchronously before bifurcation, and 
(ii) ui+l and ui-1 fall in opposite phases of this new bifurcation, then the period of their 
induced oscillation will be half their original period (appearance of three branches). In the 
next bifurcation this feature does not hold because the neighbours are not in synchronous 
motion before the new bifurcation, and the period of the oscillation for this state is not 
doubled but increased by a factor of four (ramifications with four branches) (figure 6). The 
higher-order bifurcations do not follow this rule exactly because our approximation becomes 
less accurate as A and the widths of the bands increase. 
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Figure 5. First r e t m  map for two typical neighbouring lattice points, one of them in the U 
band, and the other in the L band. 

I o:, 0.8 I 

Figure 6. Bifurcation in the L band-magnification from figure 4(a). The same conditions were 
used as those described in the caption of figure 4(a) with the modification ular the random initial 
conditions were chosen not to produce defect stat%. 

Generally, when in the U band there is a 2"-periodical motion, in the L band there exists 
one 2"-'-periodical and Zn-' 2"-periodical states which can also have different phases. This 
description can be easily generalized for systems of more then one dimension where the 
larger number of neighbours allows more complex situations. 

4. Spatiotemporal chaos 

As A is increased, beyond the accumulation point of bifurcations chaotic motion sets in the 
system. However, there remain some spatiotemporal regimes which are not involved in this 
behaviour and exhibit periodical behaviour. The stmctures composed by these turbulent 
and laminar domains lead to different phases which we present in this section. 
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In the first phase the chaotic motion is localized to some fixed domains. If the 
homogeneous state is unstable, only the defect states and their combinations can have 
periodic behaviour resulting in small periodical pattems. When the homogeneous attractor 
exists again (i.e. the Lyapunov exponent is less then In(l/( l  - 2 ~ ) )  for the local map), 
there are domains where ui NY U" and these domains are fixed in space, resisting the chaotic 
perturbations at the domain walls. The spatial distribution and the relative weight of the 
two kinds of domains depend on initial conditions, and the transients are very short. This 
kind of chaotic phase can be seen in figure 7(a) (A = 0.87). 

Figure 7. Space-time plots for different values of i. The spatial direction is horizontal, the 
temporal direction is vertical. and U is represented on a grey scale. Every Uth ( (a) and (b)) and 
16th ((d and (4) iteration is plotted; thus periodic motion with period not larger then U or 16, 
respectively, appears as a fixed point. 

For A larger than a given value, the chaotic domains can slowly propagate into the 
periodic or stationary domains until they disappear, so they become just transients in this 
phase. Also in this phase, motion of the defect states becomes possible. The transition 
is continuous which means that near the transition point the propagation is very slow. 
(figure 7(b) ,  A = 1.1). 

For A further increased, the next novelty is the formation of non-chaotic domains at 
random places with very different sizes and lifetimes (figure 7(c), A = 1.37). However, 
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due to the fact that these domains can be drawn to chaos just on the boundaries, it is clear 
that larger domains have longer lifetimes. This kind of behaviour. called spatiotemporal 
intermittency, has been found in various models [ l l ,  181. The tendency to build-up large 
non-chaotic domains depends on A, so for some A the non-chaotic domain can percolate 
over rather large systems falling on the periodic attractor, but chaotic transients can exist 
for a very long time. It seems that for a given A there exists a characteristic length in the 
system which could be defined as a maximal or typical size of the laminar domains and this 
quantity diverges at a critical value of A. 

When A is increased further, only chaotic motion is present and without any visible 
structure (figure 7(4, A = 1.5). This phase can be considered as an analogue of fully 
developed turbulence. 

5. Discussion 

In this paper we have investigated a CML with an unstable coupling controlled by a nonlinear 
map. We have found that the locally non-chaotic elementary maps can exhibit chaos 
induced by the unstable coupling. In contrast to the di!Tusively coupled case. [11.13], the 
discontinuous transition to  the inhomogeneous state leads to a stationary (non-oscillating) 
pattern. This is true for the Rayleigh-B6nard instability in fluids and also for the solution 
of the KuramotoSivashinsky equation. The inhomogeneity generated by this splitting 
results in further temporal bifurcations. The transition can be studied by two coupled maps 
representing the relevant degrees of freedom. 

The fact that one of the bands falls onto the strongly dissipative part of the map leads 
to extreme situations which can be used for approximations and helps us to understand 
the bifurcation diagram: (i) a quasi-onedimensional map implies that the motion is not 
affected by the neighbours (the well-known period doubling bifurcations) and (ii) if the 
motion is entirely determined by the motion of the first neighbours this implies a complex 
bifurcational sequence. 

Thus, the route to chaos is rather different in this model from those found in the 
diffusively coupled case. 

The chaotic phases have similarities with those found in the diffusively coupled case, 
but there are also some differences. The localized chaos phase is similar to the frozen 
random phase, but there is no pattern selection phase. Instead, we~find a rather large 
interval where in the chaotic phase non-chaotic domains with different sizes continuously 
appear and disappear. This phenomenon was called spatiotemporal intermittency and was 
related to the periodic windows in the local dynamics in the diffusive case 1111; however, 
in our model the local map is in a strictly non-chaotic domain. The mechanisms which are 
responsible for this kind of behaviour are not yet completely understood, although some 
similarities with the directed percolation problem have been pointed out [IS]. 
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